x
Black Bar Banner 1
x

Welcome to Markethive

Posted by Chuck Reynolds on October 23, 2016 - 9:05pm Edited 10/23 at 9:06pm

The New Math
The New Science

On the first and third Thursdays of every month, science teachers from around the country gather for #NGSSchat, a Twitter conversation about how to implement the new science. Topics for discussion have included how to incorporate reading and writing into science instruction and how to use technological tools alongside the standards. The July chats focused on “storylining,” which is emerging as a popular technique for bringing the standards to life in the classroom.

 

 

 

 

 

 

 

In a storyline, a teacher begins by introducing students to a phenomenon that prompts questions that students will investigate over the course of about two months. The question needs to be related to science, but accessible enough to grab students right away, and broad enough that it can’t be answered by a Google search. One storyline asks students to explain the biology behind the death of the Georgia high school football player Zyrees Oliver in 2014 after he drank too much fluid during practice. Another storyline asks simply: How does a seed grow into a tree?

“The storyline needs to be complex enough that it’s not going to just be a one-day or several-day event,” said Tricia Shelton, a high school science teacher in Kentucky and co-organizer of the NGSS chats who has been active in the implementation of NGSS. “It’s a necessity that it forces students to make those connections between many pieces of science in a coherent way.”

With storyline science, there are correct explanations, but there’s no right answer. A teacher’s job becomes less about handing down facts and more about establishing a classroom environment in which students can gather evidence and formulate arguments, with nudges along the way. This is a significant change from the way teachers have traditionally understood their role in the classroom. During the July 7 chat, some participants doubted their ability to make the shift. “[Teachers] are woefully unprepared [for] engaging in an inquiry-driven lessons. Local [teachers’] collaboration essential,” one contributor tweeted.

“For some elementary teachers it will be like I’m doing science in a real way for the first time ever,” Schweingruber said. “For high school teachers, I think one of the biggest shifts will be the emphasis on kids carrying out investigations and making decisions. That’s a real shift in your role as a teacher.”Shelton thinks the instructional changes entailed by NGSS are too big to internalize in isolated chunks of professional development.

“Face-to-face learning is super essential, but you can’t get enough in one or two days,” she said. “You need some kind of sustained system to try things out in your own classroom and then a support network that you can go back to. Without that support I think it’s hard to make that big shift.”

Along with professional networks, teachers also need curricular materials that fit the NGSS approach — textbooks, assessments and lab equipment that are well-suited to the basic method of gathering evidence and building arguments. One classroom technique that has gained currency is the building and analysis of models — functions that tune an input with some number of parameters and produce an output that describes phenomena in the world. It’s sophisticated work more often performed by professional researchers than 10th-graders.

“The first time I constructed a model was in graduate school,” Krajcik said. “It’s very challenging to say to a kid: How would you explain how all the parts work together? That’s tough.”

Constructing models may be complicated, but it’s also a perfect way for students to learn how to bring together multiple forms of evidence in the service of a larger scientific argument. The Concord Consortium, an educational research organization based in Massachusetts, is currently working with Krajcik’s group at Michigan State to create a tool called SageModeler that, in its simplest form, lets students drag and drop icons to create conceptual models to explain real-world events.

“The SageModeler tool allows [students] to construct a representation of some phenomenon and test it out,” said Dan Damelin, co-creator of SageModeler. “They can see what are the results of my setting up this model of how I think things work.” The first unit for the software, which will be pilot-tested in the spring, follows the storyline-style question: “Why Do Fishermen Need Forests?” It allows middle school students to investigate the causes and consequences of ocean acidification.

Prior to building an ocean acidification model, students will read about topics like deforestation, receive some direct instruction about the distinction between acids and bases, and carry out experiments that will give them a tangible sense of the factors involved. These could include exhaling into a jar of water containing a pH indicator (and observing that, as the water absorbs carbon dioxide, its pH declines) or conducting experiments to understand the role of photosynthesis in carbon sequestration.

Once the students have a feel for the factors contributing to ocean acidification, they’ll start to construct their models by pulling images from a clip art database to represent the variables they want to include: a car to represent carbon dioxide emissions, trees to represent carbon-dioxide-absorbing plants, shellfish to represent shellfish health, a fishing boat to represent the fishing economy. After students have defined relationships between the variables, they’ll run the model, graph the resulting data, and then refine their work to better approximate real-world data — in this case, data from the marine research center Station Aloha in Hawaii that can be dragged into SageModeler for a side-by-side comparison.

Teaching in this fashion can be exciting, but it will take sustained commitment for these techniques to ripple through the 100,000 or so public schools in the United States. In order for the new science and math standards to succeed, the entire education ecosystem will need to pull in that direction, from writers of standards to textbook publishers to professors in education schools to curriculum leaders running professional development sessions, to teachers swapping lesson ideas online. Just as the core concepts in math and science require repeated encounters over many years to be fully absorbed, a new practice of math and science teaching will need time to become established.

“I hope we give it the time,” Schweingruber said. “One problem in education reform is, people have unrealistic expectations about how quickly you change it. If you know it’s a huge ship, you have to give it some time before you decide it’s not working.”

Chuck Reynolds
Contributor